

Electricity (विधुत)

Charge (आवेश)

$$P = -1.6 \times 10^{-19} \text{ C}$$
 $P = +1.6 \times 10^{-19} \text{ C}$
 $n = 0$

- 1 coulomb = 6.25×10^{18} Electron
- S.I Unit = Coulomb (क्लम्ब) (C)

Electric Current (विधुत धारा)

Rate of flow of charge (आवेश के प्रवाह की दर)

$$I=rac{Q}{t}$$

```
1 \text{ Ampere} = \frac{1 \text{ Coulomb}}{1 \text{ sec}}
```

- S.I unit Ampire
- 🕨 Scalar (अदिश)
- Measured by = Galvanometre or Ametre
- ≻ (R= o)

दिष्ट धारा

(Direct current)

Same direction

e.g. Battery

Note-

प्रत्यावर्ती धारा

(Alternate current)

Direction change

after fix time interval

India - Frequency (आवृत्ति)

= 50 Hz

Voltage - 220 volt

- (1) DC to AC = Inverter
- (2) DC = heat loss more (उष्मा का क्षय ज्यादा)

AC = heat loss less (उष्मा का क्षय कम)

Potential Difference (विमवांतर) (V)

Work done required to carry unit positive charge from one point to another point is known as potential difference.

ईकाई धनं आवेश को एक बिन्दू से दूसरे बिंदू तक ले जाने में किया गया कार्य विमवांतर कहलाता है।

$$V = \frac{w}{q}$$

- S.I Unit = Volt
- Measure by = voltmeter (R = Infinity)

$1 \text{ Volt} = \frac{1 \text{ Joule}}{1 \text{ Coulomb}}$

Ohm's Law

V = Potential difference (विभवांतर)

I = Current (धारा)

Temp = Cons^t → Drawback

Note:-

- (1) i → high to low potential (उच्च से निम्न विभव)
- (2) Electrons → low to high potential (निम्न से उच्च विभव)

$$V = RI$$

Resistance (प्रतिरोध)

S.I unit = ohm (Ω)

1 Volt = 1 ohm × 1 Ampere

V – I Graph

Slope of V—I Graph gives Resistance (V—I आरेख का slope प्रतिरोध बताता है।)

#Ohmic conductor= straight line= follow Ohms law #Non ohmic conductor=curved line = doesn't follow ohms law

Find relation betⁿ R₁ and R₂

- (a) $R_1 = R_2$
- (b) $R_1 > R_2$
- $(c) R_1 < R_3$
- (d) NOTA

Short Circuit (लघु पथन)

- Resistance of wire (तार का प्रतिरोध) R = 0
- By ohm's law
 Current = Infinity (अनंत)

Dependency of Resistance प्रतिरोध की निर्भरता

Sampus

$$R = \frac{\rho l}{A}$$

- (1) Temprature = Resistance (प्रतिरोध)
- (2) I = length of wire
- (3)A = Area of crossection(अनुप्रस्थ काट का क्षेत्रफल)
- (4) ρ = Resisteivity (गितरोधकता)

Nature of Material

- (1) S-I unit of ρ = ohm metre
- (2) Conductivity = Resistivity (प्रतिरोधकता)

S.I. unit =
$$\frac{1}{\text{ohmmetre}} = \Omega^{-1} \text{ m}^{-1}$$

Note: It volume (आयतन) is const.

$$\frac{R_1}{R_2} = \left(\frac{I_1}{I_2}\right)^2 = \left(\frac{r_2}{r_1}\right)^4 = \left(\frac{A_2}{A_1}\right)^4$$

Old

NEW

	Old	New
Resistance प्रतिरोध	R1	R2
Length	L1	L2
Radius (त्रिज्या)	R1	R2
Area (क्षेत्रफल)	A1	A2

Joule's Law

By Abhay Sir

Heating Effect (उष्मीय प्रभाव)

$$H = I^2 Rt$$

H = Heat (उष्मा)

I = Current (धारा)

R = Resistance (प्रतिरोध)

t = time (समय)

Application

- (1) Electric Bulb= filament =tungusten
- (2) Electric Iron= Nichrome wire
- (3) Electric Heater= Nichrome wire
- (4) Electric Fuse=

Electric Power (P) (विद्युत शक्ति)

Rate of consumption of heat

$$P = \frac{H}{t}$$

$$(1) \qquad P = i^2 R$$

$$P = \frac{v}{R}$$

$$(3) | P = V$$

Note:-

$$\cong$$
 S.I. unit of P = watt

$$\cong$$
 1 HP = 746 watt

Combination of Resistance

Series (श्रेणीक्रम)

$$\mathbf{Req.} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3 + \dots$$

(विद्युत क्षेत्र)

$$Req = n \times R$$

Parallel (समांतर)

$$\frac{1}{R_{eq}} = \frac{1}{R_{1}} = \frac{1}{R_{2}} + \frac{1}{R_{3}}$$

Req =
$$\frac{\mathbf{R}}{n}$$

use - Galvanometer + Ameter

use - Houshold, Voltmeter

$$\cong$$
 1 watt = $\frac{1 \text{ joule}}{1 \text{ sec}}$

≅ less Resistance = More power = more bright

ज्यादा शक्ति = ज्यादा चमकीला = कम प्रतिरोध (If voltage (विभवांतर) const.

Commercial unit of energy (ऊर्जा का व्यवयायिक क्षात्रक)

1 Unit = 1 kwh = 3.6×10^6 Joule

Kwh = Killo watt hour = commercial units energy

Joule = S.I. unit of energy